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1. Introduction

Graph theory has provided chemists with a variety of useful tools, such as topological indices. In terms of theoretical
hemistry it is known as a graph invariant which predicts the chemical properties of the molecule. Note that every
olecule can be modified as a graph by representing atoms as vertices and chemical bonds as edges. There are two major
lasses of topological indices namely distance-based topological indices and degree-based topological indices of graphs.
hese classes of topological indices are widely applied in chemistry and pharmacology. The concept of topological index
ame from the work done by Wiener [25] while he was working on the boiling point of paraffin. He named this index as
ath number. Later on, the path number was renamed as the Wiener index. The Wiener index is mostly used to determine
tructure–property relationships. In particular, the Wiener index has a variety of applications in pharmaceutical science
nd in the structure of nanotubes. For results and applications of Wiener index, see [8–11,14].
On the other hand, the study of algebraic structures, using the properties of graph theory, tends to be an exciting

esearch topic in the last two decades. The idea of the graph associated with zero-divisors of a commutative ring
as introduced by Beck [6] in 1988. But, the present definition along with the name for the zero-divisor graph was

irst introduced by Anderson and Livingston in 1999. For recent results on zero-divisor graphs, readers may refer
o [4,5,7,12,16,20,24]. For more details on zero-divisor graphs, one may refer to the survey article [3]. Note that the graphs
onstructed from the algebraic structure are highly symmetric and so they have some remarkable properties connecting
hemical graph theory and networks in parallel computing. The graphs from the ring structure also found applications in
olecular graphs and genetic code structure, refer [13].
The main goal of this paper is to find the Wiener index of the zero-divisor graph of the ring of integers modulo n. In

ection 2, definitions and tools are developed for the calculation. In Section 3, the Wiener index of the zero-divisor graph
f the ring of integers modulo n is determined for any positive integer n. It is expected that the investigation done here
ay have some interesting applications in molecular graphs, theoretical computer science and networking.
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. Preliminaries

In this section, we summarize notations, concepts and results related to the Wiener index and zero-divisor graph which
ill be needed later.
Let G be a graph. The distance between two vertices x, y in G, denoted d(x, y), is the number of edges on the shortest

path between x and y. If there is no path connecting the two vertices, then the distance is defined as infinite. The
eccentricity of the vertex u is the maximum distance from u to any vertex, that is, e(u) = max

v∈V (G)
d(u, v). The diameter

f a graph is the maximum eccentricity of any vertex in the graph and so diam(G) = max
u∈V (G)

e(u).

The Wiener index is defined as the sum of the length of the shortest path between all pairs of vertices in the graph.
n 1976, Hosoya [15] gave the mathematical representation for the Wiener index. The distance of a vertex u of a graph G,
enoted by d(u|G), is defined as,

d(u|G) =

∑
v∈V (G)

d(u, v).

hen, the Wiener index of G is,

W (G) =
1
2

∑
u∈V (G)

d(u|G)

As mentioned, the present paper deals with what is known as the zero-divisor graph of a ring. The zero-divisor graph
f a commutative ring R, denoted by Γ (R), is a simple graph with all the non-zero zero-divisors as vertex set and distinct

vertices x, y ∈ R are adjacent if and only if xy = 0.
In recent years numerous works are done on topological indices of the graph. But to determine the value for the Wiener

index for some graphs is a tedious job. So most of the works of the Wiener index were done for partial cases or done using
algorithms. Let us review some of the work done on the topological indices of the zero-divisor graphs. Let p, q and r be
distinct prime numbers. In 2011, Ahmadi et al. [1] provided an algorithm to determine the Wiener index of a zero-divisor
graph of Zn for n = p2, pq. Later on in 2018, Mohammad et al. [18] has extended the result by determining the Wiener
index of Γ (Zn) for n = pm, pmq where m ∈ Z,m ≥ 2 using the Hosoya polynomial. Recently in [24], the authors have
etermined the Wiener index of Γ (Zn) for n = pm, pqr where m ∈ N. In [12], the authors computed eccentric topological

indices of zero-divisor graphs of Zpq ×Zr . The authors of [16], determined some edge-based eccentric topological indices
of a zero-divisor graph of Zpq × Zr2 . In [2], the first and second Zagreb indices of the zero-divisor graph were obtained
from the ring Zp × Zq × Zr . Recently, Pirzada et al. [20] determined the Wiener index of a zero-divisor graph of Zpm for
m ∈ N. For the study on the Wiener index of other graphs from Zn, see [19,21,23]. It is worth mentioning that all the
works on the topological indices of a zero-divisor graph are developed for some particular cases of the ring Zn. But, in
this paper, we provide the mathematical formulation to determine the Wiener index of a zero-divisor graph of Zn for any
positive integer n.

Before moving into the main result, we require the following result, due to Lucas [17], who characterized all finite
commutative ring according to the diameter value of Γ (R).

Theorem 2.1 ([17, Theorem 2.6]). Let R be a commutative ring. Then

(1) diam(Γ (R)) = 0 if and only if R is non reduced and isomorphic to either Z4 or Z2[y]/(y2).
(2) diam(Γ (R)) = 1 if and only if xy = 0 for each distinct pair of zero divisors and R has at least two nonzero zero divisors.
(3) diam(Γ (R)) = 2 if and only if either (i) R is reduced with exactly two minimal primes and at least three nonzero zero

divisors, or (ii) Z(R) is an ideal whose square is not (0) and each pair of distinct zero divisors has a nonzero annihilator.
(4) diam(Γ (R)) = 3 if and only if there are zero divisors a ̸= b such that (0 : (a, b)) = (0) and either (i) R is a reduced ring

with more than two minimal primes, or (ii) R is non reduced.

Theorem 2.1 can be deduced to the ring Zn, as follows.

Proposition 2.2. Let pi be a prime number and αi ∈ N for i = 1, . . . , k. Then the following statements hold true:

(1) diam(Γ (Zn)) = 0 if and only if either n is a prime or n = 4.
(2) diam(Γ (Zn)) = 1 if and only if n is a prime square.
(3) diam(Γ (Zn)) = 2 if and only if either (i) n = pα1

1 with α1 ≥ 3, or (ii) n = p1 · p2.
(4) diam(Γ (Zn)) = 3 if and only if either (i) n = pα1

1 pα2
2 · · · pαk

k with 3 ≤ k ∈ N, or (ii) n = pα1
1 pα2

2 with either α1 ≥ 2 or
α2 ≥ 2.
Now, we summarize the notations and results, which will be used to prove the main theorems.
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• For a positive integer n, the Euler’s totient function is denoted by φ(n). If n = pα1
1 · · · pαk

k where pi’s are distinct
primes and αi ∈ N for all i = 1, . . . , k, then

φ(n) =

(
pα1
1 − pα1−1

1

)
· · ·

(
pαk
k − pαk−1

k

)
.

• Let d be a proper divisor of n. Define the set Ad = {x ∈ Zn : gcd(x, n) = d}.
• For a vertex u in G, the notation Ni(u) = {v ∈ V (G) : d(u, v) = i} for 1 ≤ i ≤ diam(Γ (Zn)).

emark 2.3. Let d1, d2, . . . , dℓ be the distinct proper divisors of n and let Adj = {x ∈ Zn : gcd(x, n) = dj} for j = 1, . . . , ℓ.
hen the following statements hold true.

(1) The sets Adj for 1 ≤ j ≤ ℓ are pairwise disjoint and V (Γ (Zn)) =
⋃ℓ

j=1 Adj .
(2) [26, Proposition 2.1] |Adj | = φ( n

dj
) for 1 ≤ j ≤ ℓ.

(3) [7, Lemma 2.4] For j, k ∈ 1, 2, . . . , ℓ, a vertex of Adj is adjacent to a vertex of Adk in Γ (Zn) if and only if n divides
dj · dk.

(4) Denote the notation A⟨n/dj⟩ =
⋃

dk∈⟨n/dj⟩

Adk where dk’s are divisors of n and
⟨
n/dj

⟩
= {n/dj, 2n/dj, . . . , (dj − 1)n/dj}.

So, by part (3), the neighborhood of each vertex in Adj is A⟨n/dj⟩ in Γ (Zn).

We close this section by finding the degree of a vertex in the zero-divisor graph of Zn according to our notations.

Proposition 2.4. Let n = pα1
1 · · · pαk

k where pi’s are distinct primes and k, αi ∈ N. Let d = pβ1
1 · · · pβk

k be a proper divisor of n
and x ∈ Ad. Then, in Γ (Zn),

deg(x) =

{
d − 2 if βi ≥ ⌈αi/2⌉ for all i = 1, . . . , k
d − 1 otherwise.

Proof. Let x ∈ Ad. In Γ (Zn), any vertex x is adjacent to all the vertices of Ann(x)∗ = {y ∈ Z∗
n : x · y = 0}. Note that

|Ann(x)∗| = gcd(x, n)− 1 = d− 1. Further x ∈ Ann(x)∗ if and only if βi ≥ ⌈αi/2⌉ for all i = 1, . . . , k. Since there is no loop
for any vertex of the graph Γ (Zn), we get the required claim. □

3. Main results

In this section, we have explicitly given a formula for determining the Wiener index of a zero-divisor graph of Zn for
any n ∈ N. The corresponding results are given in Theorems 3.1, 3.4 and 3.8.

The first theorem of this kind deals with the zero-divisor graph of Zn when n is a prime power. For result regarding
the Wiener index of a zero-divisor graph of this case, refer [20, Theorem 8]. It is worthwhile to note that the calculation
part of the formula for W (Γ (Zn)) given in the following result is much simpler than the one given in Theorem 8 [20].
Further, the second part of Theorem 3.1 is mentioned in Corollary 2.11 of [18].

Theorem 3.1. Let p be prime number and α ∈ N. Then

(i) W (Γ (Zp)) = W (Γ (Z4)) = 0.

(ii) W (Γ (Zpα )) =
1
2

[
2p2(α−1)

− (α − 1)pα
+ (α − 6)pα−1

+ pα−⌈ α
2 ⌉ + 2

]
where α ≥ 2 and pα

̸= 4.

Proof. Let n ≥ 2 be a positive integer.
(i) Clearly Z(Zp)∗ = ∅ and Z(Z4)∗ is a singleton set so that W (Γ (Zp)) = W (Γ (Z4)) = 0.
(ii) Suppose n = pα for some prime p and 2 ≤ α ∈ N. If α = 2, then |Z(Zn)∗| = p − 1 and Γ (Zn) = Kp−1. Therefore

(Γ (Zn)) =
(p−1)(p−2)

2 .
Let α ≥ 2. In this case, any proper divisor of n is of the form pj for some j ∈ {1, . . . , α − 1}. Let dj = pj for all

j ∈ {1, . . . , α − 1} and let x ∈ Adj . Then, by Proposition 2.4,

deg(x) =

{
pj − 1 if j <

⌈
α
2

⌉
pj − 2 if j ≥

⌈
α
2

⌉
.

Now, by Proposition 2.2, we have diam(Γ (Zpα )) = 2. Since |V (Γ (Zpα ))| = pα−1
− 1, we get

d(x|G) =

{
(pj − 1) + 2(pα−1

− pj − 1) if j <
⌈

α
2

⌉
j α−1 j

⌈
α
⌉

(p − 2) + 2(p − p ) if j ≥ 2 .
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ote that |Adj | = φ( n
dj
) = pα−j

− pα−j−1 for 1 ≤ j ≤ α − 1. Therefore,

W (Γ (Zpα )) =
1
2

⌈ α
2 ⌉−1∑
j=1

(pα−j
− pα−j−1)(pj − 1) +

⌈ α
2 ⌉−1∑
j=1

(pα−j
− pα−j−1)(pα−1

− pj − 1)

+
1
2

α−1∑
j=⌈ α

2 ⌉

(pα−j
− pα−j−1)(pj − 2) +

α−1∑
j=⌈ α

2 ⌉

(pα−j
− pα−j−1)(pα−1

− pj)

=
1
2

[⌈α

2

⌉
pα

− pα
−

⌈α

2

⌉
pα−1

+ pα−⌈ α
2 ⌉
]

+ pα
−

⌈α

2

⌉
pα

− 2pα−1
+

⌈α

2

⌉
pα−1

+ p2α−2
− p2α−⌈ α

2 ⌉−1
+ pα−⌈ α

2 ⌉

+
1
2
[αpα

− αpα−1
−

⌈α

2

⌉
pα

+

⌈α

2

⌉
pα−1

− 2pα−⌈ α
2 ⌉ + 2]

+ αpα−1
− αpα

−

⌈α

2

⌉
pα−1

+

⌈α

2

⌉
pα

− pα−1
+ p2α−⌈ α

2 ⌉−1

=
1
2

[
2p2(α−1)

− (α − 1)pα
+ (α − 6)pα−1

+ pα−⌈ α
2 ⌉ + 2

]
. □

Using Theorem 3.1, one can obtain the following corollary which was proved by Reddy et al. in [22] and Mohammad
t al. in [18].

orollary 3.2. Let p be prime number. Then

(i) W (Γ (Zp2 )) =
(p−1)(p−2)

2 .
(ii) [18, Corollary 2.11], [22, Theorem 5.1] W (Γ (Zp3 )) =

1
2

[
2p4 − 2p3 − 3p2 + p + 2

]
=
( p−1

2

) (
2p3 − 3p − 2

)
.

In order to prove the second theorem, we need a lemma, which we state and prove below.

Lemma 3.3. Suppose n = p1 · · · pk where pi’s are distinct primes and 2 ≤ k ∈ N. Let d = pβ1
1 · · · pβk

k be a proper divisor of n
nd x ∈ Ad. Then, in Γ (Zn), e(x) = 2 if and only if d = p1 · · · pr−1 · pr+1 · · · pk where 1 ≤ r ≤ k.

Proof. Since d is a proper divisor of n, we have βi ∈ {0, 1} for all i = 1, . . . , k together with d ̸= 1 and d ̸= n.
(⇐): Assume that there exists a unique r ∈ {1, . . . , k} such that βr = 0. Let y ∈ Z(Zn)∗ \ A⟨ n

d ⟩
. Implies that y is of

the form pγ1
1 · · · pγr−1

r−1 · pγr+1
r+1 · · · pγk

k where γs ∈ {0, 1} for all s = 1, . . . , r − 1, r + 1, . . . , k. Then z = p1−γ1
1 · · · p1−γr−1

r−1 · pr ·

p1−γr+1
r+1 · · · p1−γk

k ∈ A⟨ n
d ⟩

so that x − z − y is a path in Γ (Zn) and therefore d(x, y) = 2.
(⇒): Assume that e(x) = 2. Suppose, on the contrary, that there exist two distinct t ′, t ′′ ∈ {1, . . . , k} such that

βt ′ = βt ′′ = 0. Choose y = pt ′ ∈ Z(Zn)∗ \ A⟨ n
d ⟩
. The fact that the vertices of Γ (Zn) are the proper divisors of n implies

hat, for every z = pγ1
1 · · · pγk

k ∈ A⟨ n
d ⟩
, γs = 0 for some s ∈ {1, . . . , k} \ {t ′, t ′′}. Therefore ps is not available on the prime

divisors of y · z and so y is not adjacent to any vertices in A⟨ n
d ⟩
. Thus d(x, y) > 2, a contradiction. □

We are now in the position to state and prove the second theorem which determines the formula for W (Γ (Zn)) when
= p1 · · · pk for 2 ≤ k ∈ N.

heorem 3.4. Let n = p1 · · · pk where pi’s are distinct primes and 2 ≤ k ∈ N. Let dj be a proper divisor of n for
= 1, . . . , 2k

− 2.

• For 1 ≤ j ≤ k, let dj = p1 · · · pj−1 · pj+1 · · · pk;
• For k + 1 ≤ j ≤ 2k

− 2, let dj = pβ1
1 · · · pβk

k where βi = 0 = βi′ for some distinct i, i′ ∈ {1, . . . , k}. In this case, let
Zj = {i ∈ {1, . . . , k} : βi = 0} and let Zj = {i1, . . . , ir(j)}. For 1 ≤ ℓ ≤ 2r(j)

− 2, define τℓ(j) = p
γi1
i1

· · · p
γir(j)
ir(j)

where
γis ∈ {0, 1} for all 1 ≤ s ≤ r(j) with γit = 0 for some 1 ≤ t ≤ r(j).

hen

W (Γ (Zn)) =
1
2

⎡⎣2k−2∑
j=1

(
φ(

n
dj
) · (2(n − φ(n)) − 3 − dj)

)⎤⎦+
1
2

⎡⎣ 2k−2∑
j=k+1

⎛⎝φ(
n
dj
) ·

2r(j)−2∑
ℓ(j)=1

φ(
n

τℓ(j)
)

⎞⎠⎤⎦ .

roof. Let n = p1 · · · pk where k ≥ 2. Then the number of proper divisors of n is 2k
−2. For 1 ≤ j ≤ 2k

−2, let us consider
n arbitrary proper divisor of n as d = pβ1

· pβ2
· · · pβk where β ∈ {0, 1}. Let x ∈ A . Since d ̸= n, we have β = 0 for
j 1 2 k i dj j ℓ

4
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ome ℓ ∈ {1, . . . , k}. So, by Proposition 2.4,

|N1(x)| = deg(x) = dj − 1. (1)

he following facts are followed from Lemma 3.3;

• e(x) = 2 if and only if there exists a unique r ∈ {1, . . . , k} such that βr = 0.
• e(x) = 3 if and only if there exist r ′, r ′′

∈ {1, . . . , k} such that βr ′ = βr ′′ = 0, because diam(Γ (Zn)) = 3.
• e(x) = e(y) for all y ∈ Adj .

If unique r ∈ {1, . . . , k} such that βr = 0, then by Eq. (1),

|N2(x)| = |Z(Zn)∗ \ {x}| − deg(x) = n − φ(n) − dj − 1.

herefore,

d(x|G) = (dj − 1) + 2(n − φ(n) − dj − 1)

= 2 (n − φ(n)) − dj − 3. (2)

Let βr ′ = βr ′′ = 0 for some r ′, r ′′
∈ {1, . . . , k}. Now, rearrange pi’s such that βi = 0 for 1 ≤ i ≤ r and βi = 1 for

+ 1 ≤ i ≤ k. That is dj = pr+1 · · · pk. Clearly, in this case, r ≥ 2.
Let y ∈ Adj′ and dj′ = pγ1

1 · · · pγk
k where γi ∈ {0, 1} for all i = 1, . . . , k.

Claim. d(x, y) = 2 if and only if γℓ = 0 for some ℓ ∈ {1, . . . , r} and γℓ′ = 1 for some ℓ′
∈ {r + 1, . . . , k}.

(⇒): Assume that d(x, y) = 2. Suppose, on the contrary, that either dj′ = p1 · · · pr · pγr+1
r+1 · · · pγk

k or dj′ = pγ1
1 · · · pγr

r

with γt = 0 for some t ∈ {1, . . . , r}. If dj′ = p1 · · · pr · pγr+1
r+1 · · · pγk

k , then x is adjacent to y in Γ (Zn), a contradiction.
If dj′ = pγ1

1 · · · pγr
r with γt = 0 for some 1 ≤ t ≤ r , then, in Γ (Zn), y is adjacent to all the vertices z of the form

pλ1
1 · · · pλr

r · pr+1 · · · pk with 1 − γi ≤ λi ≤ 1 for all i ∈ {1, . . . , r}. Note that λt = 1. Implies that λt ′ = 0 for some
t ′ ∈ {1, . . . , t − 1, t + 1, . . . , r} because z is a proper divisor of n. Since βt ′ = 0, z is not adjacent to x so that d(x, y) > 2,
a contradiction.

(⇐): Assume that dj′ = pγ1
1 · · · pγk

k with γℓ = 0 for some ℓ ∈ {1, . . . , r} and γℓ′ = 1 for some ℓ′
∈ {r + 1, . . . , k}. So x is

not adjacent to y. Choose z = p1 · · · pr · p1−γr+1
r+1 · · · p1−γk

k . Since γℓ′ = 1, we have z ∈ V (Γ (Zn)). Clearly x − z − y is a path
in Γ (Zn) so that d(x, y) = 2. Therefore, the claim holds true.

For x ∈ Adj and 1 ≤ m ≤ 3, let us denote σjm as the number of proper divisors d of n such that d(x, y) = m
for y ∈ Ad. So, to find |N2(x)| and |N3(x)|, we have to calculate σj2 and σj3. Note that, in this case, dj = pr+1 · · · pk.
So x is adjacent to all the vertices of the sets Ad with d of the form p1 · · · pr · pγr+1

r+1 · · · pγk
k where γi ∈ {0, 1} for

i ∈ {r + 1, . . . , k}. Therefore, σj1 = 2k−r
− 1. Also, by the claim, the sets Ad’s of distance two from x are of the form

d = pγ1
1 · · · pγk

k with γℓ = 0 for at least one ℓ ∈ {1, . . . , r} and γℓ′ = 1 for at least one ℓ′
∈ {r + 1, . . . , k}. So,

σj2 = (2r
− 1) ·

∑k−r
ℓ=1 2

k−r−ℓ
= (2r

− 1) ·
(
2k−r

− 1
)
. Further, d(x, y) = 3 when d is of the form pγ1

1 · · · pγr
r with γt = 0 for

at least one t ∈ {1, . . . , r}. Therefore, σj3 =
∑r−1

ℓ=1 2
r−ℓ

= 2r
− 2.

Here, notice that σj3 ≤ σj2. So to reduce the number of terms to be calculated for finding W (Γ (Zn)), we use σj3 in
place of σj2 by subtracting it from |V (Γ (Zn))|. Note that, if x ∈ Adj where dj = pr+1 · · · pk, then the sets Adm corresponding
to σj3 is dm = pγ1

1 · · · pγr
r with γt = 0 for some t ∈ {1, . . . , r}. Let us denote these dm’s by τ1, . . . , τσj3 . Hence,

|N3(x)| =

σj3∑
s=1

φ(
n
τs
) (3)

so that

|N2(x)| = n − φ(n) − dj −
σj3∑
s=1

φ(
n
τs
) − 1. (4)

herefore, by Eqs. (3) and (4), in case of e(x) = 3, we have

d(x|G) = (dj − 1) + 3

( σj3∑
s=1

φ(
n
τs
)

)
+ 2

(
n − φ(n) − dj −

σj3∑
s=1

φ(
n
τs
) − 1

)

= 2 (n − φ(n)) − dj +
σj3∑
s=1

φ(
n
τs
) − 3. (5)

Finally, to find the Wiener index of Γ (Zn), we have to find the number of choices for j’s such that e(x) = 2 for x ∈ Adj .
Clearly, by Lemma 3.3, there are k such choices available for j’s. For 1 ≤ j ≤ k, let d = p · · · p · p · · · p .
j 1 j−1 j+1 k

5
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Thus, by Eqs. (2) and (5),

W (Γ (Zn)) =
1
2

⎡⎣ k∑
j=1

(
φ(

n
dj
) · d(x|G)e(x)=2

)⎤⎦+
1
2

⎡⎣ 2k−2∑
j=k+1

(
φ(

n
dj
) · d(x|G)e(x)=3

)⎤⎦
=

1
2

⎡⎣ k∑
j=1

(
φ(

n
dj
) · (2(n − φ(n)) − dj − 3)

)⎤⎦
+

1
2

⎡⎣ 2k−2∑
j=k+1

(
φ(

n
dj
) ·

(
2 (n − φ(n)) − dj +

σj3∑
s=1

φ(
n
τs
) − 3

))⎤⎦
=

1
2

⎡⎣2k−2∑
j=1

(
φ(

n
dj
) · (2(n − φ(n)) − dj − 3)

)⎤⎦
+

1
2

⎡⎣ 2k−2∑
j=k+1

(
φ(

n
dj
) ·

σj3∑
s=1

φ(
n
τs
)

)⎤⎦ . □

Now we restrict the attention to n as the product of either two or three primes and explicatively given the value of
corresponding Wiener index of Γ (Zn) in terms of its prime decomposition.

Corollary 3.5. Let p1, p2 and p3 be distinct primes. Then
(i) W (Γ (Zp1p2 )) = p21 + p22 + p1p2 − 4p1 − 4p2 + 5.

(ii)W (Γ (Zp1p2p3 )) =3(p21p2p3 + p1p22p3 + p1p2p23) − 15(p1p2p3) + (p21p
2
2 + p22p

2
3 + p21p

2
3)

− 3
[
p21(p2 + p3) + p22(p1 + p3) + p23(p1 + p2)

]
+ 8(p1p2 + p2p3 + p1p3) + 2(p21 + p22 + p23) − 4(p1 + p2 + p3) + 3.

We now illustrate Theorem 3.4 when n = 210.

emark 3.6. Consider n = 2 · 3 · 5 · 7 = 210. Then the number of proper divisors of n is 24
− 2 = 14. Here d1 = 3 · 5 · 7,

2 = 2 · 5 · 7, d3 = 2 · 3 · 7 and d4 = 2 · 3 · 5. Let d5 = 2 · 3, d6 = 2 · 5, d7 = 2 · 7, d8 = 3 · 5, d9 = 3 · 7, d10 = 5 · 7, d11 =

2, d12 = 3, d13 = 5 and d14 = 7.
For instance, we illustrate in detail for d6 and d11. In general, let dj = 2β1 ·3β2 ·5β3 ·7β4 where βi ∈ {0, 1} for j = 1, . . . , 14.
Consider d6 = 2 · 5. Here β2 = 0 and β4 = 0. Implies that Z6 = {2, 4} and so r(6) = 2. Consequently τ1(6) = 3 and

τ2(6) = 7. Therefore
∑2

ℓ(6)=1 φ( n
τℓ(6)

) = 24 + 8 = 32.
For d11 = 2, we have Z11 = {2, 3, 4} and so r(11) = 3. Consequently τ1(11) = 3, τ2(11) = 5, τ3(11) = 7, τ4(11) =

· 5, τ5(11) = 3 · 7 and τ6(11) = 5 · 7. Therefore
∑6

ℓ(11)=1 φ( n
τℓ(11)

) = 24 + 12 + 8 + 6 + 4 + 2 = 56.
Note that n − φ(n) = 210 − 48 = 160.

W (Γ (Z210)) =
1
2

⎡⎣ 14∑
j=1

(
φ(

n
dj
) · (2 × 160 − 3 − dj)

)⎤⎦+
1
2

⎡⎣ 14∑
j=5

⎛⎝φ(
n
dj
) ·

2r(j)−2∑
ℓ(j)=1

φ(
n

τℓ(j)
)

⎞⎠⎤⎦
=

1
2
[50184 + 9120] = 29652.

In order to prove the third theorem, we need a lemma, which we state and prove below.

Lemma 3.7. Let n = p1 · · · pw · pαw+1
w+1 · · · pαk

k where pi’s are distinct primes, w ∈ W, 2 ≤ αi ∈ N and 2 ≤ k ∈ N. Let
d = pβ1

1 · · · pβk
k be a proper divisor of n and x ∈ Ad. Then, in Γ (Zn), e(x) = 2 if and only if either βi ̸= 0 for all i = 1, . . . , k

or d = p1 · · · pℓ−1 · pℓ+1 · · · pw · pαw+1
w+1 · · · pαk

k for some ℓ ∈ {1, . . . , w}.

Proof. Since d = pβ1
1 · · · pβk

k is a proper divisor of n, we have βi ∈ {0, 1} for all i = 1, . . . , w and βi ∈ {0, 1, . . . , αi} for all
i = w + 1, . . . , k together with d ̸= 1 and d ̸= n.

Let x ∈ Ad and y ∈ Z(Zn)∗ \ A⟨ n
d ⟩
. Implies that d(x, y) ̸= 1.

(⇐): Assume that βi ̸= 0 for all i = 1, . . . , k. Since d(x, y) ̸= 1, we have y of the form pγ1
1 · · · pγk

k with γr < αr − βr

or some r ∈ {1, . . . , k}. Choose appropriate z = pλ1
1 · · · pλk

k where λi = αi if γi = 0 and λi = αi − 1 if γi ≥ 1. Clearly
is adjacent to y. Since βi ≥ 1 for all i = 1, . . . , k, we have z ∈ A⟨ n

d ⟩
. Therefore x − z − y is a path in Γ (Zn) and thus

(x, y) = 2.
6
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Assume that w ̸= 0 and βℓ = 0 for unique ℓ ∈ {1, . . . , w} together with βi = αi for all i ∈ {1, . . . , ℓ − 1, ℓ + 1, . . . , k}.
n this case, y is of the form pγ1

1 · · · pγℓ−1
ℓ−1 · pγℓ+1

ℓ+1 · · · pγk
k where 0 ≤ γi ≤ αi for i ∈ {1, . . . , ℓ − 1, ℓ + 1, . . . , k}. Now, select

= pα1−γ1
1 · · · pαℓ−1−γℓ−1

ℓ−1 · pℓ · pαℓ+1−γℓ+1
ℓ+1 · · · pαk−γk

k ∈ Z(Zn)∗. Therefore, x − z − y is a path in Γ (Zn) and so d(x, y) = 2.
(⇒): Let e(x) = 2. Assume that βt = 0 for some t ∈ {1, . . . , k}.
If w = 0, then n = pα1

1 . . . pαk
k where αi ≥ 2 for all i = 1, . . . , k. Let us choose y = pαt

t ∈ Z(Zn)∗. Clearly, in Γ (Zn), the
vertex x is adjacent to the elements in Z(Zn)∗ of the form z = pλ1

1 · · · pλt−1
t−1 · pαt

t · pλt+1
t+1 · · · pλk

k where αi − βi ≤ λi ≤ αi.
Since the vertices of Γ (Zn) are the proper divisors of n, we have λs ̸= αs for some s ∈ {1, . . . , t − 1, t + 1, . . . , k}. Implies
that y is not adjacent to any such z so that d(x, y) ̸= 2. Thus w ̸= 0.

We claim that there exist a unique ℓ ∈ {1, . . . , w} such that βℓ = 0 together with βi = αi for all i ∈ {1, . . . , ℓ −

1, ℓ + 1, . . . , k}. Suppose, on the contrary, that there exist ℓ, ℓ′
∈ {1, . . . , w} such that βℓ = βℓ′ = 0. Without loss

of generality, let us take ℓ < ℓ′. Select y = pℓ ∈ Z(Zn)∗ \ A⟨ n
d ⟩
. Note that every vertex z ∈ A⟨ n

d ⟩
is of the form

= pγ1
1 · · · pγℓ−1

ℓ−1 ·pαℓ
ℓ ·pγℓ+1

ℓ+1 · · · p
γℓ′−1
ℓ′−1 ·p

αℓ′

ℓ′ ·p
γℓ′+1
ℓ′+1 · · · pγk

k where αi−βi ≤ γi ≤ αi. By Remark 2.3, in Γ (Zn), the neighborhood
f each vertex in A⟨ n

d ⟩
is A⟨d⟩. Since βℓ = 0, we get y /∈ A⟨d⟩. Therefore y is not adjacent to any of the elements in A⟨ n

d ⟩

nd so d(x, y) > 2, a contradiction. Thus βℓ = 0 for unique ℓ ∈ {1, . . . , w}. Next we have to prove that βi = αi for all
i ∈ {1, . . . , ℓ−1, ℓ+1, . . . , k}. If not, βs < αs for some s ∈ {1, . . . , ℓ−1, ℓ+1, . . . , k}. Let us take y = pℓ ∈ Z(Zn)∗ \A⟨ n

d ⟩
.

ote that any element in A⟨ n
d ⟩

is of the form pγ1
1 · · · pγℓ−1

ℓ−1 · pℓ · pγℓ+1
ℓ+1 · · · pγk

k where αi − βi ≤ γi ≤ αi and γs′ < αs′ for

some s′ ∈ {1, . . . , ℓ − 1, ℓ + 1, . . . , k}. Implies that y is not adjacent to any of the elements in A⟨ n
d ⟩

and so d(x, y) > 2, a
ontradiction. Thus, the claim holds true. □

We are now in a position to state and prove the third theorem which determines the formula for W (Γ (Zn)) for all the
emaining cases of n.

heorem 3.8. Let n = pα1
1 · · · pαk

k , where pi is a prime, αi ∈ N with at least one αi ≥ 2 and 2 ≤ k ∈ N. Rearrange pi’s such
hat n = p1 · · · pw · pαw+1

w+1 · · · pαk
k where αi ≥ 2 for all i = w + 1, . . . , k. (In case of αi ≥ 2 for all i = 1, . . . , k, take w = 0).

Let dj = pβ1
1 · · · pβk

k be a proper divisor of n for all j = 1, . . . ,
(∏k

i=1(αi + 1) − 2
)
. Arrange dj’s in such a way that

• for 1 ≤ j ≤ w, let dj = p1 · · · pj−1 · pj+1 · · · pw · pαw+1
w+1 · · · pαk

k ;

• for w + 1 ≤ j ≤ w +
∏k

i=1

(⌈
αi+1
2

⌉)
− 1, let βi ≥ ⌈αi/2⌉ for all i = 1, . . . , k and, for w +

∏k
i=1

⌈
αi+1
2

⌉
≤ j ≤

w +
∏k

i=1 αi − 1, let βi ≥ 1 and βi′ < ⌈αi′/2⌉ for all i = 1, . . . , k and some i′ ∈ {1, . . . , k};
• for the remaining dj’s, notate j = w +

∏k
i=1 αi, . . . ,

∏k
i=1(αi + 1) − 2. In this case, let Zj = {i ∈ {1, . . . , k} : βi = 0} and

let Zj = {i1, . . . , ir(j)}. For 1 ≤ ℓ ≤ σj, define τℓ(j) = p
γi1
i1

· · · p
γir(j)
ir(j)

where 0 ≤ γis ≤ αis for all 1 ≤ s ≤ r(j). In addition, if
βm = αm for all m ∈ {1, . . . , k} \ Zj, then there exists t ∈ {1, . . . , r(j)} such that γit < αit .

Then

W (Γ (Zn)) =
1
2

⎡⎢⎣
(∏k

i=1(αi+1)
)
−2∑

j=1

(
φ(

n
dj
) ·
(
2(n − φ(n)) − 3 − dj

))⎤⎥⎦+

1
2

⎡⎢⎣
(∏k

i=1(αi+1)
)
−2∑

j=w+
∏k

i=1 αi

⎛⎝φ(
n
dj
) ·

⎛⎝ σj∑
ℓ(j)=1

φ(
n

τℓ(j)
)

⎞⎠⎞⎠
⎤⎥⎦+

1
2

⎛⎜⎝
(∏k

i=1

⌈
αi+1
2

⌉)
−1∑

j=w+1

φ(
n
dj
)

⎞⎟⎠ .

where

σj =

⎧⎨⎩
(∏r(j)

s=1(αis + 1)
)

− 2 if βm = αm for all m ∈ {1, . . . , k} \ Zj(∏r(j)
s=1(αis + 1)

)
− 1 otherwise.

Proof. Let n = p1 · · · pw · pαw+1
w+1 · · · pαk

k . In case of αi ≥ 2 for all i = 1, . . . , k, take w = 0. Here the number of proper
divisors of n is

∏k
i=1(αi + 1)− 2. For j ∈ {1, . . . ,

∏k
i=1(αi + 1)− 2}, choose an arbitrary divisor dj = pβ1

1 · pβ2
2 · · · pβk

k where
0 ≤ βi ≤ αi for all i = 1, . . . , k. Let x ∈ Adj . Then, by Proposition 2.4,

|N1(x)| = deg(x) =

{
dj − 2 if βi ≥ ⌈αi/2⌉ for all i = 1, . . . , k
dj − 1 otherwise.

(6)

Lemma 3.7 implies that
7
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• We claim that e(x) = 2 if and only if either βi ̸= 0 for all i = 1, . . . , k or, in case of w ̸= 0, there exists a unique
r ∈ {1, . . . , w} such that βr = 0 together with βs = αs for all s ∈ {w + 1, . . . , k}.

• e(x) = 3 if and only if (i) βr ̸= 0 for all r ∈ {1, . . . , w} and βs = 0 for some s ∈ {w + 1, . . . , k} or (ii) there exists a
unique r ′

∈ {1, . . . , w} such that βr ′ = 0 together with βs < αs for some s ∈ {w + 1, . . . , k} or (iii) βr ′ = βr ′′ = 0 for
some r ′, r ′′

∈ {1, . . . , w}.
• e(x) = e(y) for all x, y ∈ Adj and for any j ∈ {1, . . . ,

∏k
i=1(αi + 1) − 2}.

ase 1: Assume that e(x) = 2 for x ∈ Adj . Then |N2(x)| = |Z(Zn)∗ \ {x}| − deg(x). So, by Eq. (6), we get

|N2(x)| =

{
n − φ(n) − dj if βi ≥

⌈
αi
2

⌉
for all 1 ≤ i ≤ k

n − φ(n) − dj − 1 otherwise

Thus

d(x|G) =

{
(dj − 2) + 2(n − φ(n) − dj) if βi ≥

⌈
αi
2

⌉
for all 1 ≤ i ≤ k

(dj − 1) + 2(n − φ(n) − dj − 1) otherwise

=

{
2(n − φ(n)) − dj − 2 if βi ≥

⌈
αi
2

⌉
for all 1 ≤ i ≤ k

2(n − φ(n)) − dj − 3 otherwise.
(7)

ase 2: Assume that e(x) = 3 for x ∈ Adj where dj = pβ1
1 · · · pβk

k . Implies that βi ∈ {0, 1} for i = 1, . . . , w. Now, rearrange
pi’s such that βi ̸= 0 for 1 ≤ i ≤ w′ and w + 1 ≤ i ≤ k′ and, βi = 0 for w′

+ 1 ≤ i ≤ w and k′
+ 1 ≤ i ≤ k. Clearly,

these rearrangements of pi’s does not affect the value of w. Therefore dj = p1 · · · pw′ · pβw+1
w+1 · · · p

βk′
k′ . Here there are three

possibilities (i) w′
= w and k′ < k (ii) w′

= w − 1, k′
≤ k and βs < αs for some s ∈ {w + 1, . . . , k} (iii) w′

≤ w − 2 and
k′

≤ k.
Let y ∈ Adj′ and dj′ = pγ1

1 · · · pγk
k where 0 ≤ γi ≤ αi for all i = 1, 2, . . . , k.

Claim. d(x, y) = 2 if and only if γℓ < αℓ − βℓ for some ℓ ∈ {1, . . . , k} and γm ̸= 0 for at least one m ∈ {1, 2, . . . , w′, w +

1, . . . , k′
}.

(⇒): Assume that d(x, y) = 2. Suppose, on the contrary, that either γi ≥ αi − βi for all i = 1, . . . , k or dj′ =

p
γw′+1
w′+1 · · · pγw

w · p
γk′+1
k′+1 · · · pγk

k where 0 ≤ γi ≤ αi for all i = w′
+ 1, . . . , w, k′

+ 1, . . . , k.
If dj′ = pγ1

1 · · · pγk
k where γi ≥ αi − βi for all i = 1, . . . , k, then d(x, y) = 1, a contradiction.

Let dj′ = p
γw′+1
w′+1 · · · pγw

w · p
γk′+1
k′+1 · · · pγk

k where 0 ≤ γi ≤ αi. If βi = αi for all i = w + 1, . . . , k′ and γi′ = αi′ for
all i′ = w′

+ 1, . . . , w, k′
+ 1, . . . , k, then d(x, y) = 1, a contradiction. Therefore, assume that either βs < αs for some

s ∈ {w+1, . . . , k′
} or γt < αt for some t ∈ {w′

+1, . . . , w, k′
+1, . . . , k}. Implies that d(x, y) ̸= 1. In both cases, y is adjacent

to all the elements in Z(Zn)∗ of the form z = p1 · · · pw′ · p
λw′+1
w′+1 · · · pλw

w · pαw+1
w+1 · · · p

αk′
k′ · p

λk′+1
k′+1 · · · pλk

k with αi − γi ≤ λi ≤ αi
for all i = w′

+ 1, . . . , w, k′
+ 1, . . . , k. Since z is a proper divisor of n, there exist t ′ ∈ {w′

+ 1, . . . , w, k′
+ 1, . . . , k} such

that λt ′ ̸= αt ′ . The corresponding βt ′ = 0 so that z is not adjacent to x and so d(x, y) > 2, a contradiction.
(⇐): Assume that γℓ < αℓ − βℓ for some ℓ ∈ {1, . . . , k} and γm ̸= 0 for some m ∈ {1, 2, . . . , w′, w + 1, . . . , k′

}. Since
γℓ < αℓ − βℓ, we get d(x, y) ̸= 1. Clearly

z = pα1
1 · · · pαm−1

m−1 · pαm−1
m · pαm+1

m+1 · · · pαk
k ∈ Z(Zn)∗.

Since γm ≥ 1 and βm ≥ 1, we have x − z − y as a path in Γ (Zn) so that d(x, y) = 2. Thus, the claim holds true.
For x ∈ Adj and 1 ≤ m ≤ 3, let us denote σjm as the number of proper divisors d of n such that d(x, y) = m for y ∈ Ad.

So, to find |N2(x)| and |N3(x)|, we have to calculate σj2 and σj3. Note that, in this case, dj = p1 · · · pw′ · pβw+1
w+1 · · · p

βk′
k′ where

either w′
≤ w − 1 or k′

≤ k − 1. Clearly, x is adjacent to all the vertices of the sets Ad with d of the form pγ1
1 · · · pγk

k

where γi ≥ αi − βi. So σj1 =

(∏k
i=1(βi + 1)

)
− 1. Also, by the claim, the sets Ad’s of distance three from x are of the

form p
γw′+1
w′+1 · · · pγw

w · p
γ ′
k+1

k′+1 · · · pγk
k where 0 ≤ γi ≤ αi. The point to note is, if βℓ = αℓ for all ℓ ∈ {w + 1, . . . , k′

} and

d = p
αw′+1
w′+1 · · · pαw

w · p
α′
k+1

k′+1 · · · pαk
k , then d(x, y) = 1. Therefore,

σj3 =

⎧⎨⎩
(∏w

i=w′+1(αi + 1)
)
·

(∏k
i=k′+1(αi + 1)

)
− 2 if βℓ = αℓ ∀ ℓ ∈ {w + 1, . . . , k′

}(∏w

i=w′+1(αi + 1)
)
·

(∏k
i=k′+1(αi + 1)

)
− 1 otherwise.

Thus, we take σj2 =

(∏k
i=1(αi + 1) − 2

)
− σj1 − σj3.

In this case dj = p1 · · · pw′ · pβw+1
w+1 · · · p

βk′
k′ where (i) w′

= w and k′ < k or (ii) w′
= w − 1, k′

≤ k and βs < αs for some
′ ′

γw′+1 γw γk′+1 γk
s ∈ {w + 1, . . . , k} or (iii) w ≤ w − 2 and k ≤ k. So the sets Adm corresponding to σj3 is dm = p
w′+1 · · · pw · pk′+1 · · · pk

8
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ith either βℓ < αℓ for some ℓ ∈ {w + 1, . . . , k′
} or γt < αt for some t ∈ {w′

+ 1, . . . , w, k′
+ 1, . . . , k}. Let us denote

hese dm’s by τ1, . . . , τσj3 . So

|N3(x)| =

σj3∑
s=1

φ(
n
τs
), (8)

and so

|N2(x)| = n − φ(n) − dj −
σj3∑
s=1

φ(
n
τs
) − 1. (9)

herefore, by Eqs. (8) and (9), in case of e(x) = 3, we have

d(x|G) = (dj − 1) + 3

( σj3∑
s=1

φ(
n
τs
)

)
+ 2

(
n − φ(n) − dj −

σj3∑
s=1

φ(
n
τs
) − 1

)

= 2 (n − φ(n)) − dj +
σj3∑
s=1

φ(
n
τs
) − 3. (10)

Now, to compute the Wiener index, it is required to find the number of choices for j’s such that e(x) = 2 for x ∈ Adj .
learly, by Lemma 3.7, the number of sets Adj in Zn with e(x) = 2 for any x ∈ Adj is w +

∏k
i=1 αi − 1. Note that, by Eq. (7),

here are two possibilities available in case of e(x) = 2. In this case, the number of choices for dj with βi ≥
⌈

αi
2

⌉
for all

1 ≤ i ≤ k is
(∏k

i=1

⌈
αi+1
2

⌉)
− 1.

For 1 ≤ j ≤ w, let dj = p1 · · · pj−1 · pj+1 · · · pw · pαw+1
w+1 · · · pαk

k and, for 1 ≤ j ≤
∏k

i=1 αi − 1, let dj = pβ1
1 · · · pβk

k where
βi ̸= 0 for all i = 1, . . . , k.

Thus, by Eqs. (7) and (10),

W (Γ (Zn)) =
1
2

⎡⎣w+
∏k

i=1 αi−1∑
j=1

(
φ(

n
dj
) · d(x|G)e(x)=2

)⎤⎦

+
1
2

⎡⎢⎣
(∏k

i=1(αi+1)
)
−2∑

j=w+
∏k

i=1 αi

(
φ(

n
dj
) · d(x|G)e(x)=3

)⎤⎥⎦

=
1
2

⎡⎣w+
∏k

i=1 αi−1∑
j=1

(
φ(

n
dj
) ·
(
2(n − φ(n)) − 3 − dj

))⎤⎦+
1
2

⎛⎜⎝
(∏k

i=1

⌈
αi+1
2

⌉)
−1∑

j=w+1

φ(
n
dj
)

⎞⎟⎠

+
1
2

⎡⎢⎣
(∏k

i=1(αi+1)
)
−2∑

j=w+
∏k

i=1 αi

(
φ(

n
dj
) ·

(
2 (n − φ(n)) − dj − 3 +

σj3∑
s=1

φ(
n
τs
)

))⎤⎥⎦

=
1
2

⎡⎢⎣
(∏k

i=1(αi+1)
)
−2∑

j=1

(
φ(

n
dj
) ·
(
2(n − φ(n)) − dj − 3

))⎤⎥⎦

+
1
2

⎡⎢⎣
(∏k

i=1(αi+1)
)
−2∑

j=w+
∏k

i=1 αi

(
φ(

n
dj
) ·

( σj3∑
s=1

φ(
n
τs
)

))⎤⎥⎦+
1
2

⎛⎜⎝
(∏k

i=1

⌈
αi+1
2

⌉)
−1∑

j=w+1

φ(
n
dj
)

⎞⎟⎠ . □

Reddy et al. [22] have found W (Γ (Zn)) for n = p2q. But there is a flaw in the proof of Theorem 5.2 in [22]. More
pecifically, the authors of [22] missed out the distance 3 cases. For instance, if x ∈ Ap and y ∈ Aq, then x is adjacent to
only the vertices of Apq but y is not adjacent to any of the vertex of Apq. Therefore d(x, y) = 3. The following result, gives
the exact value of W (Γ (Zn)) for n = p2q.

Corollary 3.9. Let p1 and p2 be distinct primes. Then

W (Γ (Z 2 )) =
1 [

6p1p3 + 2p2p2 − 12p1p2 + 2p4 − 6p3 + 3p2 + 3p2 + 2
]
.
p1p2 2 2 1 2 2 2 2 2

9
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Let us conclude this paper with an illustration for Theorem 3.8.

emark 3.10. Consider n = 5 · 7 · 23
· 32

= 2520. Here w = 2,
∏k

i=1

(⌈
αi+1
2

⌉)
− 1 = 3,

∏k
i=1 αi − 1 = 5 and the number

f proper divisors is
∏k

i=1(αi + 1) − 2 = 46.

• d1 = 7 · 23
· 32 and d2 = 5 · 23

· 32.
• Let d3 = 5 · 7 · 23

· 3, d4 = 5 · 7 · 22
· 3, d5 = 5 · 7 · 22

· 32 and d6 = 5 · 7 · 2 · 32, d7 = 5 · 7 · 2 · 3.
• Let d8 = 5 · 7 · 23, d9 = 5 · 7 · 22, d10 = 5 · 7 · 2, d11 = 5 · 7 · 32, d12 = 5 · 7 · 3, d13 = 5 · 2 · 32, d14 = 5 · 2 · 3, d15 =

5 · 22
· 32, d16 = 5 · 22

· 3, d17 = 5 · 23
· 3, d18 = 7 · 2 · 32, d19 = 7 · 2 · 3, d20 = 7 · 22

· 32, d21 = 7 · 22
· 3, d22 =

7 ·23
·3, d23 = 5 ·7, d24 = 5 ·23, d25 = 5 ·22, d26 = 5 ·2, d27 = 5 ·32, d28 = 5 ·3, d29 = 7 ·23, d30 = 7 ·22, d31 =

7 ·2, d32 = 7 ·32, d33 = 7 ·3, d34 = 23
·32, d35 = 23

·3, d36 = 22
·32, d37 = 22

·3, d38 = 2 ·32, d39 = 2 ·3, d40 =

5, d41 = 7, d42 = 23, d43 = 22, d44 = 2, d45 = 32 and d46 = 3.

In general, take dj = 5β1 · 7β2 · 2β3 · 3β4 where βi ∈ {1, . . . , αi} for j = 1, . . . , 46. For instance, we elaborate the terms
in the formula of W (Γ (Zn)) for d33 and d41.

For d33 = 7 · 3; we have β1 = β3 = 0. Implies that Z33 = {1, 3}. That is r(33) = 2, i1 = 1 and i2 = 3. Since β4 < α4, we
ave σj =

(∏2
s=1(αis + 1)

)
−1 = 7. Consequently τ1(33) = 2, τ2(33) = 22, τ3(33) = 23, τ4(33) = 5, τ5(33) = 5·2, τ6(33) = 5·22

nd τ7(33) = 5 · 23. Therefore
∑7

ℓ(33)=1 φ( n
τℓ(33)

) = 288 + 144 + 144 + 72 + 36 + 36 + 144 = 864.

For d41 = 7; we have Z41 = {1, 3, 4}. Since β2 = α2, σj =

(∏3
s=1(αis + 1)

)
− 2 = 22. Consequently, τ1(33) = 2, τ2(33) =

2, τ3(33) = 23, τ4(33) = 3, τ5(33) = 32, τ6(33) = 5, τ7(33) = 2 · 3, τ8(33) = 22
· 3, τ9(33) = 23

· 3, τ10(33) = 2 · 32, τ11(33) =

22
· 32, τ12(33) = 23

· 32, τ13(33) = 5 · 2, τ14(33) = 5 · 22, τ15(33) = 5 · 23, τ16(33) = 5 · 3, τ17(33) = 5 · 32, τ18(33) =

· 2 · 3, τ19(33) = 5 · 22
· 3, τ20(33) = 5 · 23

· 3, τ21(33) = 5 · 2 · 32 and τ22(33) = 5 · 22
· 32. Therefore

∑22
ℓ(41)=1 φ( n

τℓ(11)
) =

288+144+144+192+96+144+96+56+48+48+24+24+72+36+36+32+24+24+12+12+12+6 = 1570.
Note that n − φ(n) = 2520 − 576 = 1944. So

W (Γ (Z2520)) =
1
2

⎡⎣ 46∑
j=1

(
φ(

n
dj
) ·
(
2 × 1944 − 3 − dj

))⎤⎦
+

1
2

⎡⎣ 46∑
j=8

⎛⎝φ(
n
dj
) ·

⎛⎝ σj∑
ℓ(j)=1

φ(
n

τℓ(j)
)

⎞⎠⎞⎠⎤⎦+
1
2

⎛⎝ 5∑
j=3

φ(
n
dj
)

⎞⎠
=

1
2
[7533399 + 1351152 + 5] = 4442278.
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