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1. Introduction

Graph theory has provided chemists with a variety of useful tools, such as topological indices. In terms of theoretical
chemistry it is known as a graph invariant which predicts the chemical properties of the molecule. Note that every
molecule can be modified as a graph by representing atoms as vertices and chemical bonds as edges. There are two major
classes of topological indices namely distance-based topological indices and degree-based topological indices of graphs.
These classes of topological indices are widely applied in chemistry and pharmacology. The concept of topological index
came from the work done by Wiener [25] while he was working on the boiling point of paraffin. He named this index as
path number. Later on, the path number was renamed as the Wiener index. The Wiener index is mostly used to determine
structure—property relationships. In particular, the Wiener index has a variety of applications in pharmaceutical science
and in the structure of nanotubes. For results and applications of Wiener index, see [8-11,14].

On the other hand, the study of algebraic structures, using the properties of graph theory, tends to be an exciting
research topic in the last two decades. The idea of the graph associated with zero-divisors of a commutative ring
was introduced by Beck [6] in 1988. But, the present definition along with the name for the zero-divisor graph was
first introduced by Anderson and Livingston in 1999. For recent results on zero-divisor graphs, readers may refer
to [4,5,7,12,16,20,24]. For more details on zero-divisor graphs, one may refer to the survey article [3]. Note that the graphs
constructed from the algebraic structure are highly symmetric and so they have some remarkable properties connecting
chemical graph theory and networks in parallel computing. The graphs from the ring structure also found applications in
molecular graphs and genetic code structure, refer [13].

The main goal of this paper is to find the Wiener index of the zero-divisor graph of the ring of integers modulo n. In
Section 2, definitions and tools are developed for the calculation. In Section 3, the Wiener index of the zero-divisor graph
of the ring of integers modulo n is determined for any positive integer n. It is expected that the investigation done here
may have some interesting applications in molecular graphs, theoretical computer science and networking.
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2. Preliminaries

In this section, we summarize notations, concepts and results related to the Wiener index and zero-divisor graph which
will be needed later.

Let G be a graph. The distance between two vertices x, y in G, denoted d(x, y), is the number of edges on the shortest
path between x and y. If there is no path connecting the two vertices, then the distance is defined as infinite. The
eccentricity of the vertex u is the maximum distance from u to any vertex, that is, e(u) = mva(>c()d(u, v). The diameter

ve

of a graph is the maximum eccentricity of any vertex in the graph and so diam(G) = ma(x)e(u).
ueV(G

The Wiener index is defined as the sum of the length of the shortest path between all pairs of vertices in the graph.
In 1976, Hosoya [15] gave the mathematical representation for the Wiener index. The distance of a vertex u of a graph G,
denoted by d(u|G), is defined as,

d(u|G) = Z d(u, v).

veV(G)

Then, the Wiener index of G is,

1
w(G) = 5 > d(uic)

ueV(G)

As mentioned, the present paper deals with what is known as the zero-divisor graph of a ring. The zero-divisor graph
of a commutative ring R, denoted by I'(R), is a simple graph with all the non-zero zero-divisors as vertex set and distinct
vertices x, y € R are adjacent if and only if xy = 0.

In recent years numerous works are done on topological indices of the graph. But to determine the value for the Wiener
index for some graphs is a tedious job. So most of the works of the Wiener index were done for partial cases or done using
algorithms. Let us review some of the work done on the topological indices of the zero-divisor graphs. Let p, q and r be
distinct prime numbers. In 2011, Ahmadi et al. [ 1] provided an algorithm to determine the Wiener index of a zero-divisor
graph of Z, for n = p?, pq. Later on in 2018, Mohammad et al. [18] has extended the result by determining the Wiener
index of I'(Z,) for n = p™, p™q where m € Z, m > 2 using the Hosoya polynomial. Recently in [24], the authors have
determined the Wiener index of I'(Z,) for n = p™, pqr where m € N. In [12], the authors computed eccentric topological
indices of zero-divisor graphs of Zy, x Z,. The authors of [16], determined some edge-based eccentric topological indices
of a zero-divisor graph of Zp, x Z,2. In [2], the first and second Zagreb indices of the zero-divisor graph were obtained
from the ring Z, x Zq x Z. Recently, Pirzada et al. [20] determined the Wiener index of a zero-divisor graph of Z,m for
m € N. For the study on the Wiener index of other graphs from Z,, see [19,21,23]. It is worth mentioning that all the
works on the topological indices of a zero-divisor graph are developed for some particular cases of the ring Z,. But, in
this paper, we provide the mathematical formulation to determine the Wiener index of a zero-divisor graph of Z, for any
positive integer n.

Before moving into the main result, we require the following result, due to Lucas [17], who characterized all finite
commutative ring according to the diameter value of I'(R).

Theorem 2.1 ([17, Theorem 2.6]). Let R be a commutative ring. Then

(1) diam(I'(R)) = 0 if and only if R is non reduced and isomorphic to either Z4 or Z,[y]/(?).

(2) diam(I'(R)) = 1 if and only if xy = 0 for each distinct pair of zero divisors and R has at least two nonzero zero divisors.

(3) diam(I'(R)) = 2 if and only if either (i) R is reduced with exactly two minimal primes and at least three nonzero zero
divisors, or (ii) Z(R) is an ideal whose square is not (0) and each pair of distinct zero divisors has a nonzero annihilator.

(4) diam(I'(R)) = 3 if and only if there are zero divisors a # b such that (0 : (a, b)) = (0) and either (i) R is a reduced ring
with more than two minimal primes, or (ii) R is non reduced.

Theorem 2.1 can be deduced to the ring Z,, as follows.

Proposition 2.2. Let p; be a prime number and «; € N for i = 1, ..., k. Then the following statements hold true:
(1) diam(I"(Z,)) = 0 if and only if either n is a prime or n = 4.
(2) diam(I'(Z,)) = 1 if and only if n is a prime square.
(3) diam(I'(Zy)) = 2 if and only if either (i) n = p‘;” with a1 > 3, or (ii) n = py - pa.
(4) diam(I"(Zy)) = 3 if and only if either (i) n = p}'p;? - - - p;* with 3 < k € N, or (ii) n = p{'p5* with either oy > 2 or
oy > 2.

Now, we summarize the notations and results, which will be used to prove the main theorems.
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Notations.

e For a positive integer n, the Euler’s totient function is denoted by ¢(n). If n = p?l ~--pZ" where p;’s are distinct
primes and o; e Nforalli=1,...,k, then

d(n) = (p‘f‘ _ pt;tﬁl) o (sz< _ pzk—l) .

e Let d be a proper divisor of n. Define the set Ay = {x € Z, : gcd(x, n) = d}.
e For a vertex u in G, the notation N;(u) = {v € V(G) : d(u, v) = i} for 1 < i < diam(I"(Zy)).

Remark 2.3. Letd;,ds,...,d, be the distinct proper divisors of n and let Ag = {(x € Zy:gedix,n)=dj} forj=1,..., ¢
Then the following statements hold true.

(1) The sets Ag, for 1 <j < ¢ are pairwise disjoint and V(I"(Zy)) = Uje:lAdj.
(2) [26, Proposition 2.1] |A¢| = q{)(dﬂj) for1<j<¢.

(3) [7, Lemma 2.4] Forj, k € 1,2, ..., ¢, a vertex of Ag; is adjacent to a vertex of Ay, in I'(Z,) if and only if n divides
d; - di.
(4) Denote the notation A(n/dj) = |J Ag, where dy’s are divisors of n and (n/dj> = {n/d;, 2n/d;, ..., (d; — 1)n/d;}.
dke<n/dj)

So, by part (3), the neighborhood of each vertex in Ag; is A(n/dj> in I'(Zy).
We close this section by finding the degree of a vertex in the zero-divisor graph of Z, according to our notations.

a1, Ok

Proposition 2.4. Let n=p;'---p,* where p;’s are distinct primes and k, o; € N. Let d = p’fl . ~pf" be a proper divisor of n
and x € Aq. Then, in I'(Zy),

d—2 ifBi>[w/2] foralli=1,...,k
d—1 otherwise.

deg(x) = {

Proof. Let x € Aq. In I'(Z,), any vertex x is adjacent to all the vertices of Ann(x)* = {y € Z; : x -y = 0}. Note that
|Ann(x)*| = gcd(x, n) — 1 = d — 1. Further x € Ann(x)* if and only if 8; > [«;/2] for alli =1, ..., k. Since there is no loop
for any vertex of the graph I'(Z,), we get the required claim. O

3. Main results

In this section, we have explicitly given a formula for determining the Wiener index of a zero-divisor graph of Z, for
any n € N. The corresponding results are given in Theorems 3.1, 3.4 and 3.8.

The first theorem of this kind deals with the zero-divisor graph of Z, when n is a prime power. For result regarding
the Wiener index of a zero-divisor graph of this case, refer [20, Theorem 8]. It is worthwhile to note that the calculation
part of the formula for W(I"(Z,)) given in the following result is much simpler than the one given in Theorem 8 [20].
Further, the second part of Theorem 3.1 is mentioned in Corollary 2.11 of [18].

Theorem 3.1. Let p be prime number and « € N. Then
(i) W(I'(Zy)) = W(I'(Z4)) = 0.
(i) W(I(Zge)) = [sz(“_l) (o — 1) + (o — 6 +p= 5] 4 2] where « > 2 and p® # 4.

Proof. Let n > 2 be a positive integer.
(i) Clearly Z(Z,)* = @ and Z(Z4)* is a singleton set so that W(I"(Z,)) = W(I'(Z4)) = 0.
(ii) Suppose n = p* for some prime p and 2 < « € N. If @ = 2, then |Z(Z,)"| = p — 1 and I'(Z,) = K,_1. Therefore
W(I(Z)) = P=15P=2,
Let o > 2. In this case, any proper divisor of n is of the form p/ for some j € {1,...,a — 1}. Let d; = p/ for all
je{l,...,a—1}and letx € Ag;. Then, by Proposition 2.4,
-1 ifj<([¢
deg(x) = P’ . J [2—‘
p—2 ifj>[%].
Now, by Proposition 2.2, we have diam(I"(Zy)) = 2. Since |V(I'(Zye))| = p* 1 — 1, we get
P -D+20""-p-1) ifj<[§]

dwe) =" |
g :(p’—2)+2(p"‘1—p’) ifj > [e].
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Note that |Aq,| = ¢(dﬂj) =p*J —p*J-1for 1 <j < a — 1. Therefore,
[$1-1 [$1-1

W(I (Zpe)) = P —p TP - 1)+ P —p T =P = 1)

1
o - o o— o —. a—[ 4] - a—[ %
~[S]p 2 [ e e e e
1 o a1 o o a1 a—[¢]
+ S lap” —ap —F]p +{;‘p —2p" izl +2]
+apa—l_apa_ ’V%—‘pa—l_i_ lrg—lpa_pa—l_i_phx—f%}—l
1 a
— EI:ZPZ(a_U_(a_1)pa+(0l_6)Pa_1+Pa_|—j—| +2] 0

Using Theorem 3.1, one can obtain the following corollary which was proved by Reddy et al. in [22] and Mohammad
et al. in [18].

Corollary 3.2. Let p be prime number. Then

(i) W(I(z,)) = ©=2e=2),
(ii) [18, Corollary 2.11], [22, Theorem 5.1] W(I'(Z,)) = 1 [2p* — 2p® — 3p2 + p + 2] = (552) (2p* — 3p — 2).

In order to prove the second theorem, we need a lemma, which we state and prove below.

Lemma 3.3. Suppose n = p; - - - p, where p;’s are distinct primes and 2 < k € N. Let d = pfl .- 'p,f" be a proper divisor of n
and x € Ag. Then, in I'(Z,), e(x) =2 ifand only if d = p1---Pr—1 - Pr+1---Px Where 1 <r < k.

Proof. Since d is a proper divisor of n, we have 8; € {0, 1} for alli =1, ..., k together with d # 1 and d # n.

(«<): Assume that there exists a unique r € {1, ..., k} such that 8, = 0. Lety € Z(Z,)* \A(g). Implies that y is of
the form p!' - -/ p4l ... pl¥ where y; € {0, 1) foralls=1,...,r —1,r+1,...,k. Thenz =p; 7" -..p. "' . p, .
pg;y’“ . -p,lfyk €A(ny s0 that x — z — y is a path in I'(Z,) and therefore d(x, y) = 2.

(=): Assume that e(x) = 2. Suppose, on the contrary, that there exist two distinct t',t” € {1,...,k} such that
By = By = 0. Choose y = py € Z(Zy)* \A(g). The fact that the vertices of I'(Z,) are the proper divisors of n implies
that, for every z = pi’l --~p}:" € A(g), ys = 0 for some s € {1, ...,k}\ {t’, t”}. Therefore ps is not available on the prime
divisors of y - z and so y is not adjacent to any vertices in A<%). Thus d(x, y) > 2, a contradiction. O

We are now in the position to state and prove the second theorem which determines the formula for W(I'(Z,)) when
n=p;---pyfor2 <keN.

Theorem 3.4. Let n = p;---pr where p;’s are distinct primes and 2 < k € N. Let d; be a proper divisor of n for
j=1,...,2k=2
e For1<j<kletdi=p1---pi1-Djs1- D
eFork+1<j<2k—2 let di = pfl --~pf“ where 8; = 0 = By for some distinct i,i" € {1,...,k}. In this case, let
Zi={iefl,....k} : pi = 0} and let Z; = {i1, ..., iy} For 1 < £ < 2'0) — 2, define v,; = p;” «--pZE&” where
Vi € {0, 1} for all 1 < s < r(j) with y;, = 0 for some 1 <t < r(j).

Then
1 2k_2 1 1 2k_2 n 22 n
W(F(Zn) = 5 Z(¢(d)-(2(n—¢(n))—3—dj)) o | 2o o) D e
= ! j=k+1 R0

Proof. Let n = p; - - - px where k > 2. Then the number of proper divisors of n is 2 —2. For 1 < j < 2¥—2, let us consider
an arbitrary proper divisor of n as d; = p’fl -pé‘z .- ~pfk where i € {0, 1}. Let x € Aq,. Since d; # n, we have 8, = 0 for

4
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some ¢ € {1, ..., k}. So, by Proposition 2.4,
IN1(x)| = deg(x) = d; — 1. (1)
The following facts are followed from Lemma 3.3;

e e(x) = 2 if and only if there exists a unique r € {1, ..., k} such that g, = 0.
e ¢(x) = 3 if and only if there exist r', " € {1, ..., k} such that 8, = B,» = 0, because diam(I"(Z,)) = 3.
e e(x)=e(y)forally € Ag;.

If unique r € {1, ..., k} such that 8, = 0, then by Eq. (1),
IN2(X)| = |Z(Zn)* \ {x}| — deg(x) =n — ¢(n) — d;j — 1.

Therefore,
dx|G) =(dj — 1)+ 2(n —¢p(n) —d; — 1)
=2(n—¢(n) —d—3. (2)
Let B = B = 0 for some ', 1" € {1, ..., k}. Now, rearrange p;'s such that 3 = 0 for 1 < i < r and B = 1 for

r+1<i<k Thatis dj = py41 - - - px. Clearly, in this case, r > 2.

Lety € Ag, and dy = pit-. p}:" where y; € {0, 1} foralli=1,...,k

Claim. d(x,y) = 2 if and only if y, = 0 for some £ € {1,...,r} and yp = 1 for some ¢’ € {r + 1, ..., k}.

(=): Assume that d(x,y) = 2. Suppose, on the contrary, that either dy = p;---pr pf:’ll . p,{" ordy = P1 cplt
with y; = 0 forsome t € {1,...,r}. If dy = p1---pr pfﬂ:’l] . p,{", then x is adjacent to y in I'(Z,), a contradiction.
If dy = p}'---p/" with = 0 for some 1 < t < r, then, in I'(Z,), y is adjacent to all the vertices z of the form
p?l --~p?r “Dre1---bPewith 1 —9 < A < 1foralli € {1,...,r}. Note that A; = 1. Implies that Ay = 0 for some
t'e{l,...,t—1,t+1,...,r} because z is a proper divisor of n. Since 8 = 0, z is not adjacent to x so that d(x,y) > 2,
a contradiction.

(«<=): Assume that dy = p? . p,‘:" with y, = 0 for some £ € {1,...,r} and y» = 1 for some £’ € {r+1,...,k}. Sox is

not adjacent to y. Choose z = py---pr - p: i’r“ .- ~p,1_y". Since y, = 1, we have z € V(I'(Z,)). Clearly x — z — y is a path

in I'(Z,) so that d(x, y) = 2. Therefore, the claim holds true.

For x € Ag and 1 < m < 3, let us denote oj, as the number of proper divisors d of n such that d(x,y) = m
fory € Ag. So to find [Ny(x)| and |Ns(x)|, we have to calculate oj; and oj3. Note that, in this case, dj = pri1--- Dk
So x is adjacent to all the vertices of the sets A; with d of the form p;---p; pf':]l y" where y; € {0, 1} for

e {r+1,...,k}. Therefore, oj1 = 2k=" _ 1. Also, by the claim, the sets Aq’s of dlstance two from x are of the form
d = pﬁ’l- p}’" with y, = 0 for at least one £ € {1,...,r} and y» = 1 for at least one ¢’ € {r + 1,...,k}. So,
op =2 —1)- Y okt = 2r — 7). (2¥°" — 1). Further, d(x, y) = 3 when d is of the form p}" - - - p/" with y, = 0 for
at least one t € {1, ..., r}. Therefore, oj3 = 2;1 20t =2r —2.

Here, notice that oj3 < oj,. So to reduce the number of terms to be calculated for finding W(I"(Z,)), we use oj3 in
place of o}, by subtracting it from |V(I"(Z,))|. Note that, if x € Ag; where dj = p,41 - - - Pk, then the sets Ay, corresponding

to oj3 is dpy = p}l’1 -..pY" with y, = 0 for some t € {1, ..., r}. Let us denote these dy’s by 71, ..., To;3- Hence,
93 n
IN3(x)| = Z¢(;S> (3)
so that
ME] n
INa(x)| =n—¢<n)—dj—§¢(r—s)—1. (4)

Therefore, by Egs. (3) and (4), in case of e(x) = 3, we have

d(x|G) = (d; — 1)+ 3 <Z¢(Z>) +2 (n — 9 —d— Y 9() - 1)
s=1 s s=1 S

=2 gm) — 4+ 3 9() 3. Q

s=1

Finally, to find the Wiener index of I'(Z,), we have to find the number of choices for j’s such that e(x) = 2 for x € Ag;.
Clearly, by Lemma 3.3, there are k such choices available for j's. For 1 <j <k, letd; = pq---pj—1 - Pj+1 - - P«

5
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Thus, by Egs. (2) and (5),

1 2k—2
Wrz) = 5 Z(¢(;)~d(x|c)e(x>_z) - (¢(3)-d(x|c)e<x)_3)

j=k+1 J

N =

1 k
2 > <¢<§> (2(n — ¢(n)) — d; — 3))

+
el
Y

(o) (z (n—g(m) — d+ Y $(>) - 3))

J s=1

1
2
2k—2 n
(qb(g) -(2(n — ¢(n)) — dj — 3))
j
1
2

2k_2 53
o)) | o
d T
; j

s=1

N =

Now we restrict the attention to n as the product of either two or three primes and explicatively given the value of
corresponding Wiener index of I'(Z,) in terms of its prime decomposition.

Corollary 3.5. Let pq, p, and ps be distinct primes. Then
(i) W(I(Zp,p,)) =i+ D5 +Ppip2 — 4p1 — 4p2 +5.
2

()W (I (Zp,pypy)) =3(P3p2P3 + P1P3P3 + P1P2P3) — 15(p1p2p3) + (P3P3 + P33 + pip3)
— 3[Pi(p2 + p3) + P3(P1 + p3) + P3(P1 + p2)]
+ 8(p1p2 + Pab3 + P1p3) + 2(p; 4 p5 + p3) — 41 4+ p2 + p3) + 3.

We now illustrate Theorem 3.4 when n = 210.

Remark 3.6. Consider n=2-3.5-7 = 210. Then the number of proper divisors of n is 2* — 2 = 14. Here d; =3-5 - 7,
dz:2-5~7,d3:2-3-7andd4:2~3-5.Letd5:2-3,d5:2~5,d7:2~7,d3:3-5,d9:3-7,d10:5-7,(111 =
2, d]z =3, d13 =5 and d14 =17.

For instance, we illustrate in detail for ds and d1. In general, let d; = 2f1.3%2.53.7P4 where g; € {0, 1} forj =1, ..., 14.

Consider dg = 2 - 5. Here B, = 0 and B4 = 0. Implies that Zg = {2, 4} and so r(6) = 2. Consequently 76y = 3 and
ty(6) = 7. Therefore Y (g, ; ¢() =24 +8 = 32.

For diy = 2, we have Zy; = {2,3,4} and so r(11) = 3. Consequently ty11) = 3, Ty(11) = 5, T3¢11) = 7, a1y =
3.5, 7511 = 3+ 7 and Te11) = 5 - 7. Therefore Y 5,1, Ph5)=24+12+8+6+4+2=56.

Note that n — ¢(n) = 210 — 48 = 160.

112 n 1] & e
W(F(sz)):i ;<¢(Ch)-(2x160—3—d]‘)> +5 ]2:5: ¢(E})[§::l¢(?()))

1
= 5150184 + 9120] = 29652.

In order to prove the third theorem, we need a lemma, which we state and prove below.

Lemma 3.7. Letn = p;---py -pﬁ}‘jﬁ’ ~--ka where p;’s are distinct primes, w € W, 2 < o; € Nand 2 < k € N. Let

d= p’fl ~~p,’j" be a proper divisor of n and x € Ay. Then, in I'(Zy), e(x) = 2 if and only if either 8; # 0 foralli =1, ...,k

ord=p1- - Pe1-Pest- Pu Doy - Pk for some £ € {1, ..., w}.
Proof. Since d = p/fl ~-~pf" is a proper divisor of n, we have 8; € {0, 1} foralli=1,...,wand §; € {0, 1, ..., o;} for all

i=w+1,...,ktogether withd # 1and d # n.

Let x € Ajand y € Z(Z,)* \A(g). Implies that d(x, y) # 1.

(«<): Assume that 8; A2 0 foralli =1,...,k. Since d(x,y) # 1, we have y of the form pl{l . --p,fk with v < o — B
for some r € {1, ..., k}. Choose appropriate z = pil ~--p,§" where A; = o; if = 0and A; = o; — 1 if y; > 1. Clearly
Z(is agljac;nt toy.Since g; > 1foralli=1,...,k we have z € A(g). Therefore x — z — y is a path in I'(Z,) and thus
X, y)=2.
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Assume that w # 0 and 8; = O for unique ¢ € {1, ..., w} together with i = @; forallie {1,...,£—1,£+1,...,k}.

In this case, y is of the form p}" ---p;7' - p;'}' - - pi* where 0 < y; <@ forie{1,...,£—1,£+1,...,k}. Now, select
z=pi g T py T kT € Z(Z, ). Therefore, x — z — y is a path in I'(Z,) and so d(x, y) = 2.

(=): Let e(x) = 2. Assume that 8, = 0 for some t € {1, ..., k}.
If w =0, then n = p}’ ...pz" where o; > 2 foralli =1, ..., k. Let us choose y = p{* € Z(Z,)*. Clearly, in I'(Z,), the

vertex x is adjacent to the elements in Z(Z,)* of the form z = p}‘ ~~-p?f11 - pt -p:\jjl ~-~p2" where a; — i < A < a;.
Since the vertices of I"'(Z,) are the proper divisors of n, we have A; # o for somes € {1,...,t—1,t+1,..., k}. Implies
that y is not adjacent to any such z so that d(x, y) # 2. Thus w # 0.

We claim that there exist a unique ¢ € {1, ..., w} such that 8, = 0 together with g; = «; foralli € {1,...,¢ —
1,£ + 1,...,k}. Suppose, on the contrary, that there exist ¢,¢ € {1,...,w} such that 8, = By = 0. Without loss
of generality, let us take ¢ < ¢'. Select y = p, € Z(Z,)* \A<§). Note that every vertex z € A(g) is of the form

Ye—1 Ye+1 Ye—1 @y V41

z=py" Dy Dy e Py Py Py it where o — B; < yi < o By Remark 2.3, in I'(Zy), the neighborhood

of each vertex in A(%) is Aig). Since B, = 0, we gety ¢ A(q. Therefore y is not adjacent to any of the elements in A(%)
and so d(x,y) > 2, a contradiction. Thus 8; = 0 for unique £ € {1, ..., w}. Next we have to prove that 8; = «; for all
ief{l,....,£—1,£+4+1,...,k}.Ifnot, B < o5 forsomes e {1,...,£—1,£+1,..., k}. Let us take y = p, eZ(Zn)*\A(%).

Note that any element in Ay is of the form ) pe ~p£f11 ---pr* where o — B; < y; < o and yy < ay for
some s € {1,...,£—1,¢+1,...,k}. Implies that y is not adjacent to any of the elements in A(g) and so d(x,y) > 2,a
contradiction. Thus, the claim holds true. O

We are now in a position to state and prove the third theorem which determines the formula for W(I'(Z,)) for all the
remaining cases of n.

Theorem 3.8. Letn = p‘;’l e pz", where p; is a prime, a; € N with at least one «; > 2 and 2 < k € N. Rearrange p;’s such
thatn = py---pw -pijﬂrﬂl --~p;f" where o; > 2 foralli=w+1,...,k (Incase of o; > 2 foralli =1, ...,k take w = 0).

Let d; = pf‘ .- ~pf" be a proper divisor of n forallj=1, ..., (]_[f:1(ai +1)— 2). Arrange d;’s in such a way that

Qw1

o for 1 <j<w,letdj=pi-- pj1-Pis1-Dw- Dy - D'

eforw+1<j< w+]_[f‘=1<{°"7+1—‘> — 1, let By > [a;j/2] foralli =1,...,k and,forw—i—]_[i-‘=1 P’;l—‘ <j<
w +]_[1.‘:1 aj— 1, let Bi>1and By < [ay/2] foralli=1,...,kand somei € {1,...,k};

o for the remaining d;’s, notate j = w + ]_[:;1 Uiy vty ]_[:.;1(04,- + 1) — 2. In this case, let Z; = {i € {1, ..., k} : g = 0} and
let Z; = {i1, ..., irxj). For 1 < € < o}, define ) = pfyfl ---p:ir.“) where 0 < y;; < o for all 1 < s < r(j). In addition, if

Bm = oy forallm e {1, ..., k} \ Z, then there exists t € {1,...,r(j)} such that y;, < ;.
Then
: (I @it ) -2
n
W(I(zZy)) =3 Z <¢>(5) ~(2(n—¢(n) —3 - d,»)) +

j=1

(S

) [ (I @it n) -2 ) o 1 (1T [52 ) )
1 e [ e +5] X e
j= k / =1 ) j=w+1 J
L J=w+]Tie, @i j
where
(H;g)l(ais-i-l))—Z if Bm =oap forallme {1,...,k}\ Z
0j = .
(HE&(% + 1)) — 1 otherwise.
Proof. letn = p;---py ~PZ,T11 --pe¥.In case of o; > 2 for alli = 1,...,k take w = 0. Here the number of proper

divisors of n is ]—[Ll(ai +1)—2.Forje{l,..., ]_[;‘:1(05,- + 1) — 2}, choose an arbitrary divisor d; = p/f‘ -pfz . -pf" where
0<Bi<aiforalli=1,...,k Letx e Adj. Then, by Proposition 2.4,

d]-—2 1f,312|—0l,/2-| foralli=1,...,k
d; — 1 otherwise.

IN1(x)| = deg(x) = { (6)

Lemma 3.7 implies that
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e We claim that e(x) = 2 if and only if either §; # 0 foralli = 1, ..., k or, in case of w # 0, there exists a unique
r € {1,..., w} such that 8. = 0 together with 8; = a5 foralls e {w + 1, ..., k}.

e e(x) =3 if and only if (i) B # O forallr € {1,...,w} and Bs = 0 for some s € {w + 1, ..., k} or (ii) there exists a
unique r’ € {1, ..., w} such that 8, = 0 together with B; < o for some s € {w+1, ..., k} or (iii) B = B;» = 0 for
some ', r" € {1,...,w}.

e e(x)=e(y)forallx,y e Ag; and for any j € {1, ..., ]_[L](a,- +1)—2}L

Case 1: Assume that e(x) = 2 for x € Ag;. Then |No(x)| = |1Z(Zn)* \ {x}| — deg(x). So, by Eq. (6), we get

n—o¢(n)—d; if g >[5 forall1<i<k
|N2(X)| — 45( ) ] /31 il [z—l = =
n—¢(n)—di—1 otherwise
Thus
d(x|C) = (dj —2)+2(n — ¢(n) — d;) if g; > .[%1 forall1<i<k
(dj — 1)+ 2(n — ¢(n) — d; — 1) otherwise
_2tn—¢m)—di—2 ifp=[F] forall1<i<k o
~ |2(n—¢(n)) —d; — 3 otherwise.
Case 2: Assume that e(x) = 3 for x € Ag; where d; = p‘fl . -pf". Implies that g; € {0, 1} fori =1, ..., w. Now, rearrange
pi'ssuchthat i #0for1 <i<w andw+1<i<kand gi=0forw +1<i<wandk'+1<i<k. Clearly,
these rearrangements of p;’s does not affect the value of w. Therefore d; = p;---py - pi T]l e pf/’". Here there are three
possibilities (i) w' = w and k' < k (ii) w' = w — 1, k' < k and s < o, for some s € {w + 1,..., k} (iii) w’ < w — 2 and
K <k

Yk

LetyeAdj, and dy :pi’l-upk where0 <y <qo;foralli=1,2,...,k.

Claim. d(x,y) = 2 ifand only if y, < ay — B, for some £ € {1, ...,k} and y, # O for at least onem € {1,2,...,w’, w +
1,..., K}

(=): Assume that d(x,y) = 2. Suppose, on the contrary, that either y; > o; — g foralli = 1,...,kordy =

pzj‘;’:j]] cphy -p)k/,";f ~-pwhere0 <y <giforalli=w +1,...,w, kK +1,... k

Ifdy = p’l’1 .- ~p,}:" where y; > «; — B foralli=1, ...,k then d(x, y) = 1, a contradiction.

Let dy = p:}'t’:f cphY ~pz,’<fl’ ~-prwhere 0 < y; < 0. If B = @ foralli = w+1,...,K and y» = oy for
alli/ =w +1,...,w, kK +1,...,k then d(x,y) = 1, a contradiction. Therefore, assume that either 8; < «s for some
se{w+1,...,K}ory <o forsomet € {w+1,...,w,kK+1,...,k}. Implies that d(x, y) # 1.In both cases, y is adjacent
to all the elements in Z(Zy)* of the form z = p; - - pur -pw'f;: coepheeputit P -pz,":gl cptwitha —y < M <@
foralli=w'+1,...,w,k'+1, ...,k Since z is a proper divisor of n, there exist t' € {w' +1,...,w,k +1,...,k} such
that Ay # ay. The corresponding 8 = 0 so that z is not adjacent to x and so d(x, y) > 2, a contradiction.

(«<): Assume that v, < oy — B, for some £ € {1,...,k} and y;;, # 0 forsome m € {1,2,...,w’,w+1,...,k’}. Since

Ve < g — Be, we get d(x, y) # 1. Clearly
z=pi - ptpan e pat Rt € Z(Zn)"
Since y,, > 1 and B, > 1, we have x — z — y as a path in I'(Z,) so that d(x, y) = 2. Thus, the claim holds true.

For x € Ay, and 1 < m < 3, let us denote oj,, as the number of proper divisors d of n such that d(x, y) = m for y € Aq.
So, to find |N,(x)| and |N3(x)|, we have to calculate o}, and oj3. Note that, in this case, dj = p1 - - pw 'Pfﬁl . ~pf,"/ where
either w' < w — 1 or K < k — 1. Clearly, x is adjacent to all the vertices of the sets A; with d of the form pj{l ~--p,f"
where y; > o; — fi. S0 0j1 = (]_[le(,Bi + 1)) — 1. Also, by the claim, the sets A;’s of distance three from x are of the

Yu/+1

form p,;." cophy ~p,}:,":11 ---pr* where 0 < y < o;. The point to note is, if B, = o forall £ € {w+ 1,...,k'} and
d= p‘;%fll - plw . pz,“: -+ pp¥, then d(x, y) = 1. Therefore,
(I a (i + 1)) - (nffzk,ﬂ(m + 1)) -2 iffr=a,Veec{w+1,...,k}
0j3 =

([T a (i + 1)) - (]_[ff:,(,ﬂ(ai + 1)) —1 otherwise.

Thus, we take o, = (1‘[:.‘:1(% +1)— 2) — oj1 — oj3.
ﬂerl ﬁk’

In this case dj = p1---pw - P,,1; D, Where (i) w' =w and k' < k or (ii) w' = w — 1, k¥ < k and B; < a5 for some
se{w+1,...,k} or (iii) w < w—2and kK < k. So the sets Ay, corresponding to oj3 is d, = pZ}t’:’f phy -p,}:ff]l oppk

8
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with either 8, < « for some ¢ € {w+ 1,...,k'} or 4 < «; for some t € {w +1,...,w,k' +1,...,k}. Let us denote
these dp,’s by 11, ..., Toj3- So
93 n
N3(x)| = — 8
IN3(x)| Z«p(rs), 8)
s=1
and so
L
Ny(x)] =n—¢(n)—d; — —)—1. 9
N (x)| ¢(n) — d; ;MTS) 9)

Therefore, by Egs. (8) and (9), in case of e(x) = 3, we have

d(x|G) = (d; — 1)+ 3 <Z¢(f>) +2 (n SCORLED R 1)
s=1 s s=1 s

= 21— ¢(n) —d+ Y ¢(>) - 3. (10)
s=1 s

Now, to compute the Wiener index, it is required to find the number of choices for j's such that e(x) = 2 for x Ag;.
Clearly, by Lemma 3.7, the number of sets Ag; in Z, with e(x) = 2 for any x € Ag; is w + ]_[f‘:1 a; — 1. Note that, by Eq. (7),
there are two possibilities available in case of e(x) = 2. In this case, the number of choices for d; with g; > [%1 for all

1<i<kis (]_[f;l {"’;]-‘) -1
1 (973

For1 <j<w,letdj =pi---pi1-Pix1-"Pw DPyii " - Pi
Bi#0foralli=1,... k.
Thus, by Eqgs. (7) and (10),

w+H£<<:1 ai—1

W) =5 | ). (¢(
j=1

and, for 1 <j < Hf;l ai— 1, letdj = p‘fl --~pf" where

| —
| =

) d(X|G)e(x)=2>

=9

(M (@) -2

1
+3 > <¢(3) : d(XIG)e<x):3>

<

j:uH»]_[:-;1 aj
1 11)+]_[L1 aj—1 n 1 (HL1 {ﬁ“)il n
=3 Z (¢(dj)-(2(n—¢(n))—3—dj)) T3 Z ¢(Ej)
j=1 j=w+1
: (M (@in) -2 o
n n
A <¢(dj)-<2<n—¢(n>)—dj—3+2¢(rs>))
j=w+TE @ s=1
: (M @i+1) -2
n
=3 ,:21 <¢>(dj)- (2(n — ¢(m) — d; — 3))
(M (@) -2 ois (e[ =5 ])
1 n n 1 n
+5 > (¢(dj)-(2¢(rs>)> +3 .Z )] o
j=w+]_[£»‘:1 aj s=1 j=w+1

Reddy et al. [22] have found W(I'(Z,)) for n = p?q. But there is a flaw in the proof of Theorem 5.2 in [22]. More
specifically, the authors of [22] missed out the distance 3 cases. For instance, if x € A, and y € Ag, then x is adjacent to
only the vertices of Ay but y is not adjacent to any of the vertex of Ap,. Therefore d(x, y) = 3. The following result, gives
the exact value of W(I"(Z,)) for n = p%q.

Corollary 3.9. Let p, and p, be distinct primes. Then

1

= = [6p1p3 + 2p2p3 — 12p1p3 + 2p5 — 6p3 + 3p3 + 3p2 +2].

W (Z,) = 3

9
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Let us conclude this paper with an illustration for Theorem 3.8.

Remark 3.10. Consider n = 5-7-23-3% = 2520. Here w = 2, [, ((“zi]) —1=3,]]%, @ —1=5 and the number

of proper divisors is ]_[:»;1(0(,- +1)—2=46.

edi=7-23-3%andd, =523 32

eletd3=5-7-2>-3,d,=5-7-2>-3,d5=5-7-22-3%2anddg =5-7-2-3% d;=5-7-2-3.

e letdg=5-7-23 dg=5-7-2% dip=5-7-2,d1=5-7-3% dp=5-7-3,d;3=5-2-3%, diy=5-2-3, di5 =
5.22.3%2 dig=5-22-3,d;7=5-23-3,dig=7-2-32, dig=7-2-3, dyg=7-22-3%, dyy =7-22-3, dyp =
7:23.3, dy3 =57, dyu =523, dys =5:22, dyg =52, dyy =5-3%, dyg =5-3, dog =7-23, d3g=7-2%, d31 =
7-2,d3p=7-3%, d33=7-3, d3g =23-3% dy5 =233, dyg=2%2-3%, d3; =2%-3, dsg=2-3%, dyg=2-3, dy =
5, d41 =7, d42 :23, d43 :22, d44:2, d45 :32 and d46 =3.

In general, take d;j = 51 - 772 . 23 . 34 where B; € {1, ..., o4} forj =1, ..., 46. For instance, we elaborate the terms
in the formula of W(I"(Z,)) for d33 and dy4;.

For d33 = 7 - 3; we have 87 = B3 = 0. Implies that Z33 = {1, 3}. That is r(33) = 2, i; = 1 and i, = 3. Since ;4 < oy, We
have 0j = (l_[le(o[,'s + 1))—1 = 7. Consequently T1(33) = 2, Ty33) = 22, T3(33) = 23, T433) = 5, T5(33) = 5.2, To(33) = 5.22
and 7733 = 5 - 2%. Therefore Y55, $(55) =288 + 144+ 144+ 72 + 36 + 36 + 144 = 864.

For d4; = 7; we have Zs; = {1, 3, 4}. Since B, = ap, 0j = (]_[3:1(011'5 + 1)) — 2 = 22. Consequently, ty33) = 2, Ty33) =

22, 1333y = 23, T433 = 3, T3z = 3%, Te33) = 5, Ty33) = 2+ 3, T3z = 2% -3, Toany =233, Tio33) =2 3%, Ti1033) =

2232 Tip33) = 22 - 3%, Ti333) = 52, Tz = 5022, Ti533) = 5-2°, Tie33) = 53, iz = 5 3%, Tiss3) =

5:2-3, Tigas = 5223, T3z = 5-2% 3, T3y =52 3% and Tp33) = 5 - 22 - 32 Therefore Y 75y, Plo) =

288+144+144+192+96+144+96+56+48 +48+24+24+72+36+36+32+244+24+12+12+12+6 = 1570.
Note that n — ¢(n) = 2520 — 576 = 1944. So

46
W(I'(Zys)) = 1 Z ((p(ﬁ). (2x1944 -3 — dj))

2| =\
1| & n i n 1 > n

+- A=)+ ¢(—) + = (=)
2 Z dj Z(j)Z:I ‘E({U') 2 1223 dj

i=8

1
=3 [7533399 + 1351152 + 5] = 4442278.
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